Вопрос:

3. Упростите выражение: a) $$sin(\frac{3}{2}\pi - \alpha) - cos(\pi + \alpha)$$; б) $$tg(\pi + \alpha) + ctg(\frac{\pi}{2} - \alpha)$$; в) $$sin 2\alpha + (sin \alpha - cos \alpha)^2$$; г) $$\frac{cosa}{1-sina} - \frac{cosa}{1+sina}$$.

Ответ:

3. Упростите выражение: a) $$sin(\frac{3}{2}\pi - \alpha) - cos(\pi + \alpha) = -cos(\alpha) - (-cos(\alpha)) = -cos(\alpha) + cos(\alpha) = 0$$. б) $$tg(\pi + \alpha) + ctg(\frac{\pi}{2} - \alpha) = tg(\alpha) + tg(\alpha) = 2tg(\alpha)$$. в) $$sin 2\alpha + (sin \alpha - cos \alpha)^2 = sin 2\alpha + sin^2 \alpha - 2sin \alpha cos \alpha + cos^2 \alpha = sin 2\alpha + 1 - sin 2\alpha = 1$$. г) $$\frac{cos\alpha}{1-sin\alpha} - \frac{cos\alpha}{1+sin\alpha} = \frac{cos\alpha(1+sin\alpha) - cos\alpha(1-sin\alpha)}{(1-sin\alpha)(1+sin\alpha)} = \frac{cos\alpha + cos\alpha sin\alpha - cos\alpha + cos\alpha sin\alpha}{1 - sin^2\alpha} = \frac{2cos\alpha sin\alpha}{cos^2\alpha} = \frac{2sin\alpha}{cos\alpha} = 2tg\alpha$$. Ответ: a) $$0$$ б) $$2tg(\alpha)$$ в) $$1$$ г) $$2tg(\alpha)$$
Смотреть решения всех заданий с фото
Подать жалобу Правообладателю

Похожие