Упростим выражение:
- $$3^{\frac{1}{7}}x^5y^6 \cdot (-2^{\frac{1}{3}}x^5y)^{\frac{2}{2}} = 3^{\frac{1}{7}}x^5y^6 \cdot (-2^{\frac{1}{3}}x^5y) = -3^{\frac{1}{7}} \cdot 2^{\frac{1}{3}} \cdot x^{5+5} \cdot y^{6+1} = -3^{\frac{1}{7}} \cdot 2^{\frac{1}{3}} \cdot x^{10} \cdot y^7$$
- $$(a^{n+1})^2 : a^{2n} = a^{2(n+1)} : a^{2n} = a^{2n+2} : a^{2n} = a^{2n+2-2n} = a^2$$
Ответ: a) -3^(1/7) * 2^(1/3) * x¹⁰ * y⁷; б) а²