а) \(\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| \cdot \cos{\angle BAC} = a \cdot a \cdot \cos{60^\circ} = a^2 \cdot \frac{1}{2} = \frac{a^2}{2}\)
б) \(\overrightarrow{AC} \cdot \overrightarrow{CB} = |\overrightarrow{AC}| \cdot |\overrightarrow{CB}| \cdot \cos{\angle \overrightarrow{AC}, \overrightarrow{CB}} = a \cdot a \cdot \cos{120^\circ} = a^2 \cdot (-\frac{1}{2}) = -\frac{a^2}{2}\)
в) \(\overrightarrow{AC} \cdot \overrightarrow{BD} = |\overrightarrow{AC}| \cdot |\overrightarrow{BD}| \cdot \cos{\angle \overrightarrow{AC}, \overrightarrow{BD}} = a \cdot \frac{a\sqrt{3}}{2} \cdot \cos{90^\circ} = a \cdot \frac{a\sqrt{3}}{2} \cdot 0 = 0\)
г) \(\overrightarrow{AC} \cdot \overrightarrow{AC} = |\overrightarrow{AC}|^2 = a^2\)
Ответ: a) \(\frac{a^2}{2}\); б) \(-\frac{a^2}{2}\); в) 0; г) \(a^2\)