Решение:
В прямоугольном треугольнике ABC (угол B - прямой) используем определения тригонометрических функций.
a) \(cos A = \frac{BA}{AC} = 0,6\), \(BA = 12\)
\[AC = \frac{BA}{cos A} = \frac{12}{0,6} = 20\]
б) \(cos A = \frac{BA}{AC} = 0,8\), \(BC = 18\)
Сначала найдем BA. \(sin^2 A + cos^2 A = 1\), следовательно, \(sin A = \sqrt{1 - cos^2 A} = \sqrt{1 - 0,8^2} = \sqrt{1 - 0,64} = \sqrt{0,36} = 0,6\). \(sin A = \frac{BC}{AC}\).
\[AC = \frac{BC}{sin A} = \frac{18}{0,6} = 30\]
\[BA = AC \cdot cos A = 30 \cdot 0,8 = 24\]
в) \(sin A = \frac{BC}{AC} = \frac{5}{13}\), \(BC = 10\)
\[AC = \frac{BC}{sin A} = \frac{10}{\frac{5}{13}} = \frac{10 \cdot 13}{5} = 26\]
г) \(sin A = \frac{BC}{AC} = \frac{5}{13}\), \(BA = 36\)
Сначала найдем cos A. \(cos A = \sqrt{1 - sin^2 A} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13}\). \(cos A = \frac{BA}{AC}\).
\[AC = \frac{BA}{cos A} = \frac{36}{\frac{12}{13}} = \frac{36 \cdot 13}{12} = 39\]
д) \(tg A = \frac{BC}{BA} = 0,75\), \(BA = 8\)
\[BC = tg A \cdot BA = 0,75 \cdot 8 = 6\]
\[AC = \sqrt{BA^2 + BC^2} = \sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10\]
е) \(tg A = \frac{BC}{BA} = 2,4\), \(BC = 12\)
\[BA = \frac{BC}{tg A} = \frac{12}{2,4} = 5\]
\[AC = \sqrt{BA^2 + BC^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13\]
Ответы:
a) AC = 20
б) AC = 30
в) AC = 26
г) AC = 39
д) AC = 10
е) AC = 13