Решение:
Так как угол B - прямой, мы имеем прямоугольный треугольник. \(tg A = \frac{sin A}{cos A}\). Используем основное тригонометрическое тождество \(sin^2 A + cos^2 A = 1\).
a) Если \(sin A = \frac{\sqrt{2}}{2}\), то:
\[cos^2 A = 1 - sin^2 A = 1 - \left(\frac{\sqrt{2}}{2}\right)^2 = 1 - \frac{2}{4} = \frac{2}{4} = \frac{1}{2}\]
\[cos A = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}\]
\[tg A = \frac{sin A}{cos A} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1\]
б) Если \(sin A = 0,6 = \frac{3}{5}\), то:
\[cos^2 A = 1 - sin^2 A = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25}\]
\[cos A = \sqrt{\frac{16}{25}} = \frac{4}{5} = 0,8\]
\[tg A = \frac{sin A}{cos A} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} = 0,75\]
в) Если \(cos A = \frac{1}{\sqrt{10}}\), то:
\[sin^2 A = 1 - cos^2 A = 1 - \left(\frac{1}{\sqrt{10}}\right)^2 = 1 - \frac{1}{10} = \frac{9}{10}\]
\[sin A = \sqrt{\frac{9}{10}} = \frac{3}{\sqrt{10}}\]
\[tg A = \frac{sin A}{cos A} = \frac{\frac{3}{\sqrt{10}}}{\frac{1}{\sqrt{10}}} = 3\]
г) Если \(cos A = \frac{5}{\sqrt{41}}\), то:
\[sin^2 A = 1 - cos^2 A = 1 - \left(\frac{5}{\sqrt{41}}\right)^2 = 1 - \frac{25}{41} = \frac{16}{41}\]
\[sin A = \sqrt{\frac{16}{41}} = \frac{4}{\sqrt{41}}\]
\[tg A = \frac{sin A}{cos A} = \frac{\frac{4}{\sqrt{41}}}{\frac{5}{\sqrt{41}}} = \frac{4}{5} = 0,8\]
Ответы:
a) \(tg A = 1\)
б) \(tg A = 0,75\)
в) \(tg A = 3\)
г) \(tg A = 0,8\)