Решение:
Используем основное тригонометрическое тождество: \(sin^2 A + cos^2 A = 1\).
a) Если \(cos A = \frac{\sqrt{3}}{2}\), то:
\[sin^2 A = 1 - cos^2 A = 1 - \left(\frac{\sqrt{3}}{2}\right)^2 = 1 - \frac{3}{4} = \frac{1}{4}\]
\[sin A = \sqrt{\frac{1}{4}} = \frac{1}{2}\]
б) Если \(cos A = 0,6 = \frac{3}{5}\), то:
\[sin^2 A = 1 - cos^2 A = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25}\]
\[sin A = \sqrt{\frac{16}{25}} = \frac{4}{5} = 0,8\]
в) Если \(cos A = \frac{3\sqrt{39}}{20}\), то:
\[sin^2 A = 1 - cos^2 A = 1 - \left(\frac{3\sqrt{39}}{20}\right)^2 = 1 - \frac{9 \cdot 39}{400} = 1 - \frac{351}{400} = \frac{49}{400}\]
\[sin A = \sqrt{\frac{49}{400}} = \frac{7}{20}\]
г) Если \(cos A = \frac{\sqrt{21}}{5}\), то:
\[sin^2 A = 1 - cos^2 A = 1 - \left(\frac{\sqrt{21}}{5}\right)^2 = 1 - \frac{21}{25} = \frac{4}{25}\]
\[sin A = \sqrt{\frac{4}{25}} = \frac{2}{5} = 0,4\]
Ответы:
a) \(sin A = \frac{1}{2}\)
б) \(sin A = 0,8\)
в) \(sin A = \frac{7}{20}\)
г) \(sin A = \frac{2}{5} = 0,4\)