Решение:
а) cosA = 0,6, BA = 12
cosA = BA/AC
0,6 = 12/AC
AC = 12 / 0,6 = 20
б) cosA = 0,8, BC = 18
cosA = BA/AC
sin^2(A) + cos^2(A) = 1
sinA = sqrt(1 - cos^2(A)) = sqrt(1 - 0,8^2) = sqrt(1 - 0,64) = sqrt(0,36) = 0,6
tgA = sinA / cosA = 0,6 / 0,8 = 3/4
tgA = BC/BA
3/4 = 18/BA
BA = 18 * 4/3 = 24
AC = sqrt(BA^2 + BC^2) = sqrt(24^2 + 18^2) = sqrt(576 + 324) = sqrt(900) = 30
в) sinA = 5/13, BC = 10
sinA = BC/AC
5/13 = 10/AC
AC = 10 * 13/5 = 26
г) sinA = 5/13, BA = 36
sinA = BC/AC
cosA = sqrt(1 - sin^2(A)) = sqrt(1 - (5/13)^2) = sqrt(1 - 25/169) = sqrt(144/169) = 12/13
tgA = sinA / cosA = (5/13) / (12/13) = 5/12
tgA = BC/BA
5/12 = BC/36
BC = 36 * 5/12 = 15
AC = sqrt(BA^2 + BC^2) = sqrt(36^2 + 15^2) = sqrt(1296 + 225) = sqrt(1521) = 39
д) tgA = 0,75, BA = 8
tgA = BC/BA
0,75 = BC/8
BC = 0,75 * 8 = 6
AC = sqrt(BA^2 + BC^2) = sqrt(8^2 + 6^2) = sqrt(64 + 36) = sqrt(100) = 10
е) tgA = 2,4, BC = 12
tgA = BC/BA
2,4 = 12/BA
BA = 12 / 2,4 = 5
AC = sqrt(BA^2 + BC^2) = sqrt(5^2 + 12^2) = sqrt(25 + 144) = sqrt(169) = 13