В прямоугольном треугольнике АВС с углом B = 90°, АВ = 6 и ВС = 8.
а) | \(\vec{BA}\) | - | \(\vec{BC}\) | и | \(\vec{BA} - \vec{BC}\) |:
| \(\vec{BA}\) | - | \(\vec{BC}\) | = 6 - 8 = -2
По теореме Пифагора, АС = \(\sqrt{AB^2 + BC^2}\) = \(\sqrt{6^2 + 8^2}\) = \(\sqrt{36 + 64}\) = \(\sqrt{100}\) = 10.
| \(\vec{BA} - \vec{BC}\) | = АC = 10
б) |AB|+|BC| и | \(\vec{AB}\)+\(\vec{BC}\)|:
|AB|+|BC| = 6+8 = 14
| \(\vec{AB}\)+\(\vec{BC}\)| = АC = 10
в) | \(\vec{BA}\) | + | \(\vec{BC}\) | и | \(\vec{BA} + \vec{BC}\) |:
| \(\vec{BA}\) | + | \(\vec{BC}\) | = 6 + 8 = 14
| \(\vec{BA} + \vec{BC}\) | = | - (\(\vec{AB}\) - \(\vec{BC}\)) | = | \(\vec{AC}\) | = 10
г) | AB | - | ВС | И | \(\vec{AB}\) - \(\vec{BC}\)|.
|AB| - |BC| = 6 - 8 = -2
| \(\vec{AB}\) - \(\vec{BC}\)| = | \(\vec{AC}\)| = 10
Ответ: -2 и 10; 14 и 10; 14 и 10; -2 и 10