Вопрос:

6. В треугольнике АВС биссектрисы внешних углов при ершинах В и А пересекаются в точке D. Найдите ∠ВСА, если ∠BDA = 70°.

Ответ:

Сумма углов треугольника равна 180°. В треугольнике BDA: углы DBA и DAB равны (180° - угол B)/2 и (180° - угол A)/2 соответственно. Угол BDA = 70°, значит, (180° - угол B)/2 + (180° - угол A)/2 + 70° = 180°.

(180° - угол B)/2 + (180° - угол A)/2 = 110°.

180° - угол B + 180° - угол A = 220°.

360° - угол B - угол A = 220°.

Угол B + угол A = 140°.

Угол C = 180° - 140° = 40°.

Ответ: 40°.

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие