Вопрос:

В треугольнике АВС известно, что АВ = ВС. Внешний угол при вершине В равен 138°. Найдите величину угла С этого треугольника. Ответ дайте в градусах.

Ответ:

Так как внешний угол при вершине B равен 138°, то внутренний угол при вершине B равен 180° - 138° = 42°.

В треугольнике ABC стороны AB и BC равны, следовательно, треугольник равнобедренный с основанием AC.

Значит, углы при основании AC равны, то есть ∠A = ∠C.

Сумма углов в треугольнике равна 180°, поэтому ∠A + ∠B + ∠C = 180°.

Подставляем известные значения: ∠A + 42° + ∠C = 180°.

Так как ∠A = ∠C, то 2∠C + 42° = 180°.

2∠C = 180° - 42° = 138°.

∠C = 138° / 2 = 69°.

Ответ: 69

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие