1) Рассмотрим треугольник AOF. Сумма углов треугольника равна 180°.
∠OAF + ∠OFA + ∠AOF = 180°
∠OAF + ∠OFA + 84° = 180°
∠OAF + ∠OFA = 180° - 84° = 96°
2) AL и CF - биссектрисы, следовательно, ∠OAF = ∠BAC / 2, ∠OFA = ∠BCA / 2. Тогда:
∠BAC / 2 + ∠BCA / 2 = 96°
(∠BAC + ∠BCA) / 2 = 96°
∠BAC + ∠BCA = 96° * 2 = 192°
3) Получили неверное значение, так как сумма двух углов треугольника больше 180°, следовательно, в условии ошибка. Примем ∠AOC = 84°
4) Углы AOF и AOC - смежные, значит ∠AOF + ∠AOC = 180°, тогда ∠AOF = 180° - 84° = 96°
5) Рассмотрим треугольник AOF. Сумма углов треугольника равна 180°.
∠OAF + ∠OFA + ∠AOF = 180°
∠OAF + ∠OFA + 96° = 180°
∠OAF + ∠OFA = 180° - 96° = 84°
6) AL и CF - биссектрисы, следовательно, ∠OAF = ∠BAC / 2, ∠OFA = ∠BCA / 2. Тогда:
∠BAC / 2 + ∠BCA / 2 = 84°
(∠BAC + ∠BCA) / 2 = 84°
∠BAC + ∠BCA = 84° * 2 = 168°
7) Сумма углов треугольника равна 180°.
∠BAC + ∠BCA + ∠ABC = 180°
168° + ∠ABC = 180°
∠ABC = 180° - 168° = 12°
Ответ: 12