Решим уравнения.
a) $$2x^2+7x-9=0$$
Найдем дискриминант:
$$D = b^2 - 4ac = 7^2 - 4 \cdot 2 \cdot (-9) = 49 + 72 = 121$$
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-7 + \sqrt{121}}{2 \cdot 2} = \frac{-7 + 11}{4} = \frac{4}{4} = 1$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-7 - \sqrt{121}}{2 \cdot 2} = \frac{-7 - 11}{4} = \frac{-18}{4} = -4.5$$
б) $$3x^2 = 18x$$
$$3x^2 - 18x = 0$$
$$3x(x - 6) = 0$$
$$x_1 = 0$$
$$x_2 = 6$$
в) $$100x^2 - 16 = 0$$
$$100x^2 = 16$$
$$x^2 = \frac{16}{100}$$
$$x = \pm \sqrt{\frac{16}{100}} = \pm \frac{4}{10} = \pm 0.4$$
г) $$x^2 - 16x + 63 = 0$$
Найдем дискриминант:
$$D = b^2 - 4ac = (-16)^2 - 4 \cdot 1 \cdot 63 = 256 - 252 = 4$$
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{16 + \sqrt{4}}{2 \cdot 1} = \frac{16 + 2}{2} = \frac{18}{2} = 9$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{16 - \sqrt{4}}{2 \cdot 1} = \frac{16 - 2}{2} = \frac{14}{2} = 7$$
Ответ: a) $$x_1 = 1$$, $$x_2 = -4.5$$; б) $$x_1 = 0$$, $$x_2 = 6$$; в) $$x_1 = 0.4$$, $$x_2 = -0.4$$; г) $$x_1 = 9$$, $$x_2 = 7$$