Решим квадратные уравнения:
1) $$9x^2 = 4$$
$$x^2 = \frac{4}{9}$$
$$x = \pm \sqrt{\frac{4}{9}}$$
$$x = \pm \frac{2}{3}$$
$$x_1 = \frac{2}{3}$$, $$x_2 = -\frac{2}{3}$$
2) $$5x^2 + 2x = 0$$
$$x(5x + 2) = 0$$
$$x_1 = 0$$, $$5x + 2 = 0$$
$$5x = -2$$
$$x_2 = -\frac{2}{5} = -0.4$$
3) $$6x^2 + 5x + 1 = 0$$
$$D = b^2 - 4ac = 5^2 - 4 \cdot 6 \cdot 1 = 25 - 24 = 1$$
$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-5 \pm \sqrt{1}}{2 \cdot 6} = \frac{-5 \pm 1}{12}$$
$$x_1 = \frac{-5 + 1}{12} = \frac{-4}{12} = -\frac{1}{3}$$
$$x_2 = \frac{-5 - 1}{12} = \frac{-6}{12} = -\frac{1}{2}$$
4) $$2x^2 - 7x + 6 = 0$$
$$D = b^2 - 4ac = (-7)^2 - 4 \cdot 2 \cdot 6 = 49 - 48 = 1$$
$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{7 \pm \sqrt{1}}{2 \cdot 2} = \frac{7 \pm 1}{4}$$
$$x_1 = \frac{7 + 1}{4} = \frac{8}{4} = 2$$
$$x_2 = \frac{7 - 1}{4} = \frac{6}{4} = \frac{3}{2} = 1.5$$
Ответ: 1) $$x_1 = \frac{2}{3}$$, $$x_2 = -\frac{2}{3}$$; 2) $$x_1 = 0$$, $$x_2 = -0.4$$; 3) $$x_1 = -\frac{1}{3}$$, $$x_2 = -\frac{1}{2}$$; 4) $$x_1 = 2$$, $$x_2 = 1.5$$