1) \((8 \cdot 2^{-7})^6 \cdot (128^{-3})^{-1} = (2^3 \cdot 2^{-7})^6 \cdot (2^{7 \cdot -3})^{-1} = (2^{-4})^6 \cdot (2^{-21})^{-1} = 2^{-24} \cdot 2^{21} = 2^{-3} = \frac{1}{2^3} = \frac{1}{8}\)
2) \(\frac{625^5 \cdot 25^{-4}}{125^{-9}} = \frac{(5^4)^5 \cdot (5^2)^{-4}}{(5^3)^{-9}} = \frac{5^{20} \cdot 5^{-8}}{5^{-27}} = \frac{5^{12}}{5^{-27}} = 5^{12+27} = 5^{39}\)