Решение:
1. В \(\triangle DLC\) найдем угол \(\angle LDC\):
\(\angle LDC = 180^\circ - \angle DCL - \angle DLC = 180^\circ - 34^\circ - 105^\circ = 41^\circ\)
2. Т.к. \(DL\) - биссектриса \(\angle BDA\), то \(\angle BDA = 2 \cdot \angle LDC = 2 \cdot 41^\circ = 82^\circ\).
3. Найдем \(\angle DBC\) (угол B) в \(\triangle DBC\):
\(\angle DBC = 180^\circ - \angle BDA - \angle DCL = 180^\circ - 82^\circ - 34^\circ = 64^\circ\)
Ответ: \(\angle DBC = 64^\circ\), \(\angle BDA = 82^\circ\), \(\angle LDC = 41^\circ\).