Вопрос:

Задача 1 (C-16, II): Найдите угол при основании равнобедренного треугольника, если угол при вершине, лежащей между боковыми сторонами, в 4 раза меньше угла между боковыми сторонами.

Ответ:

Решение: Пусть \(\angle A\) - угол при основании равнобедренного треугольника, тогда угол между боковыми сторонами равен \(4x\). Сумма углов в треугольнике равна 180 градусов. Тогда \(x + x + 4x = 180^\circ\), \(6x = 180^\circ\), \(x = 30^\circ\). Угол при основании равен \(30^\circ\). Угол при вершине равен \(4*30=120^\circ\). Ответ: \(30^\circ\).
Смотреть решения всех заданий с фото
Подать жалобу Правообладателю

Похожие