Вопрос:

Задача 16. Дано: ∠1 + ∠2 + ∠3 = 230° (рис. 5.16). Найти ∠1, ∠2, ∠3.

Ответ:

Задача 16. На рисунке 5.16 углы ∠1 и ∠2 являются вертикальными. Значит, ∠1 = ∠2. Также известно, что ∠1 + ∠2 + ∠3 = 230°. Подставим ∠1 вместо ∠2: ∠1 + ∠1 + ∠3 = 230°, то есть 2*∠1 + ∠3 = 230°. Угол ∠3 и угол ∠1 являются смежными, а значит, их сумма равна 180°: ∠1 + ∠3 = 180°. Выразим ∠3: ∠3 = 180° - ∠1. Подставим это значение в первое уравнение: 2*∠1 + (180° - ∠1) = 230°. Решаем уравнение: ∠1 + 180° = 230°, следовательно, ∠1 = 230° - 180° = 50°. Так как ∠1 = ∠2, то ∠2 = 50°. ∠3 = 180° - ∠1 = 180° - 50° = 130°. **Ответ: ∠1 = 50°, ∠2 = 50°, ∠3 = 130°**
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие