Вопрос:

Задача 1: Прямые m и s параллельны, их пересекает секущая p. Найдите все углы, образованные при пересечении прямых, если градусные меры двух из них относятся как 43:47.

Ответ:

Пусть один угол равен (43x), а другой (47x). Так как прямые параллельны, а p – секущая, то эти углы могут быть либо равными (если оба острые или оба тупые), либо в сумме давать 180° (если один острый, а другой тупой). **Случай 1:** Углы равны. (43x = 47x) (4x = 0) (x = 0), что невозможно, так как углы не могут быть равны 0°. **Случай 2:** Углы в сумме дают 180°. (43x + 47x = 180) (90x = 180) (x = 2) Тогда один угол равен (43 * 2 = 86°), а другой (47 * 2 = 94°). При пересечении двух параллельных прямых секущей образуются 8 углов. В данном случае, есть два типа углов: острые (86°) и тупые (94°). Все острые углы равны между собой, и все тупые углы равны между собой. Угол, смежный с 86°, равен (180° - 86° = 94°). Угол, смежный с 94°, равен (180° - 94° = 86°). **Ответ:** Углы равны 86° и 94°.
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие