Вопрос:

634. Решите уравнение: a) x/4+x/3=14; б) a/2-a/8=5; в) y/4=y-1; г) 2z+3=2z/5; д) 2c/3-4c/5=7; e) 5x/9+x/3+4=0; ж) (4a+1)/9=(5a)/12; з) (5m)/12-(m)/8=2/3; и) (3n)/14+n/2=7/2.

Ответ:

a) \(\frac{x}{4} + \frac{x}{3} = 14\) \(\frac{3x+4x}{12} = 14\) \(7x = 168\) \(x = 24\) б) \(\frac{a}{2} - \frac{a}{8} = 5\) \(\frac{4a-a}{8} = 5\) \(3a = 40\) \(a = \frac{40}{3}\) в) \(\frac{y}{4} = y - 1\) \(y = 4y - 4\) \(-3y = -4\) \(y = \frac{4}{3}\) г) \(2z + 3 = \frac{2z}{5}\) \(10z + 15 = 2z\) \(8z = -15\) \(z = -\frac{15}{8}\) д) \(\frac{2c}{3} - \frac{4c}{5} = 7\) \(\frac{10c - 12c}{15} = 7\) \(-2c = 105\) \(c = -52.5\) e) \(\frac{5x}{9} + \frac{x}{3} + 4 = 0\) \(\frac{5x + 3x}{9} = -4\) \(8x = -36\) \(x = -\frac{9}{2}\) ж) \(\frac{4a+1}{9} = \frac{5a}{12}\) \(16a + 4 = 15a\) \(a = -4\) з) \(\frac{5m}{12} - \frac{m}{8} = \frac{2}{3}\) \(\frac{10m - 3m}{24} = \frac{2}{3}\) \(7m = 16\) \(m = \frac{16}{7}\) и) \(\frac{3n}{14} + \frac{n}{2} = \frac{7}{2}\) \(\frac{3n + 7n}{14} = \frac{7}{2}\) \(10n = 49\) \(n = \frac{49}{10}\)
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие