$$x^2 + (\sqrt{11} + \sqrt{2})x + \sqrt{22} = 0$$
Найдем дискриминант:
$$D = (\sqrt{11} + \sqrt{2})^2 - 4 \cdot 1 \cdot \sqrt{22} = 11 + 2\sqrt{22} + 2 - 4\sqrt{22} = 13 - 2\sqrt{22}$$
$$x_{1,2} = \frac{-(\sqrt{11} + \sqrt{2}) \pm \sqrt{13 - 2\sqrt{22}}}{2}$$
Обратим внимание, что $$13 - 2\sqrt{22} = (\sqrt{11} - \sqrt{2})^2$$
$$x_{1,2} = \frac{-(\sqrt{11} + \sqrt{2}) \pm (\sqrt{11} - \sqrt{2})}{2}$$
$$x_1 = \frac{-\sqrt{11} - \sqrt{2} + \sqrt{11} - \sqrt{2}}{2} = \frac{-2\sqrt{2}}{2} = -\sqrt{2}$$
$$x_2 = \frac{-\sqrt{11} - \sqrt{2} - \sqrt{11} + \sqrt{2}}{2} = \frac{-2\sqrt{11}}{2} = -\sqrt{11}$$
Ответ: $$x_1 = -\sqrt{2}$$, $$x_2 = -\sqrt{11}$$