Решим систему уравнений:
$$\begin{cases}
2(3x - y) - 5 = 2x - 3y \\
5 - (x - 2y) = 4y + 16
\end{cases}$$
$$\begin{cases}
6x - 2y - 5 = 2x - 3y \\
5 - x + 2y = 4y + 16
\end{cases}$$
$$\begin{cases}
4x + y = 5 \\
-x - 2y = 11
\end{cases}$$
Умножим первое уравнение на 2:
$$\begin{cases}
8x + 2y = 10 \\
-x - 2y = 11
\end{cases}$$
Сложим уравнения:
$$7x = 21$$
$$x = 3$$
Подставим $$x = 3$$ в первое уравнение:
$$4(3) + y = 5$$
$$12 + y = 5$$
$$y = -7$$
Ответ: $$(3, -7)$$