д) \(\frac{2c}{c-d} - \frac{c+d}{c} = \frac{2c \cdot c - (c+d) \cdot (c-d)}{(c-d)c} = \frac{2c^2 - (c^2-d^2)}{(c-d)c} = \frac{2c^2 - c^2+d^2}{(c-d)c} = \frac{c^2+d^2}{(c-d)c}\)
Ответ: \(\frac{c^2+d^2}{(c-d)c}\)