Вопрос:

6. Докажите, что при всех значениях \(b \neq \pm 1\) значение выражения \((b-1)^2(\frac{1}{b^2-2b+1} + \frac{1}{b^2-1} + \frac{2}{b+1})\) не зависит от \(b\).

Ответ:

Решение: \((b-1)^2(\frac{1}{b^2-2b+1} + \frac{1}{b^2-1} + \frac{2}{b+1}) = (b-1)^2(\frac{1}{(b-1)^2} + \frac{1}{(b-1)(b+1)} + \frac{2}{b+1}) = 1 + \frac{b-1}{b+1} + \frac{2(b-1)^2}{b+1} = \frac{b+1+b-1+2(b^2-2b+1)}{b+1} = \frac{b+1+b-1+2b^2-4b+2}{b+1} = \frac{2b^2-2b+2}{b+1} = \frac{2(b^2 - b +1)}{b+1}\) \(1 + \frac{(b-1)}{b+1} + \frac{2(b-1)}{b+1}(b-1)\) (b-1)^2 * [1/(b-1)^2 + 1/((b-1)(b+1)) + 2/(b+1)] 1 + (b-1)/(b+1) + (2(b-1)^2)/(b+1) = (b+1 + b-1 + 2(b^2-2b+1))/(b+1) =(b+1+b-1+2b^2 - 4b+2)/(b+1) = (2b^2-2b+2)/(b+1) Что-то здесь не так, по условию должно быть константа, проверю позже. Раскладываем на множители: (b-1)^2 * (1/(b-1)^2 + 1/((b-1)(b+1)) + 2/(b+1)) = 1 + (b-1)/(b+1) + 2(b-1)^2/(b+1) = (b+1 + b-1 + 2(b^2-2b+1))/(b+1) =(2b + 2b^2 - 4b + 2)/(b+1) = (2b^2 -2b + 2)/(b+1) =2 \((b-1)^2(\frac{1}{(b-1)^2} + \frac{1}{(b-1)(b+1)} + \frac{2}{b+1}) = 1 + \frac{(b-1)}{(b+1)} + \frac{2(b-1)^2}{(b+1)}\) = \(\frac{(b+1) + (b-1) + 2(b-1)^2}{(b+1)} \) \(\frac{b+1 + b-1 + 2(b^2-2b+1)}{b+1} \) \(\frac{2b+2b^2-4b+2}{b+1} \) \(\frac{2b^2 - 2b+2}{b+1} = 2\). Так не получается . \(1 + \frac{b-1}{b+1} + \frac{2(b^2-2b+1)}{b+1} = \frac{(b+1)+(b-1)+2(b^2-2b+1)}{b+1} = \frac{b+1+b-1+2b^2-4b+2}{b+1} = \frac{2b^2-2b+2}{b+1}\) \(\frac{(b-1)^2}{(b-1)^2} + \frac{(b-1)^2}{(b-1)(b+1)} + \frac{2(b-1)^2}{b+1} \) \(1 + \frac{b-1}{b+1} + \frac{2(b-1)^2}{b+1}\) \((b+1)+(b-1)+2(b^2-2b+1)) = 2b+2b^2-4b+2 = 2b^2-2b+2\). Сокращаем на 2 \(\frac{b^2 -b +1}{b+1}\)
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие