г) $$\frac{3x^2-14x+11}{14} = \frac{x+9}{2} - \frac{x^2+x+1}{5}$$
Умножим обе части уравнения на 70:
$$5(3x^2-14x+11) = 35(x+9) - 14(x^2+x+1)$$
$$15x^2-70x+55 = 35x+315 - 14x^2-14x-14$$
$$15x^2-70x+55 - 35x-315 + 14x^2+14x+14= 0$$
$$29x^2-91x-246= 0$$
$$D = (-91)^2 - 4 \cdot 29 \cdot (-246) = 8281 + 28584 = 36865$$
$$x_1 = \frac{91 + \sqrt{36865}}{2 \cdot 29} = \frac{91+\sqrt{36865}}{58}$$
$$x_2 = \frac{91 - \sqrt{36865}}{2 \cdot 29} = \frac{91-\sqrt{36865}}{58}$$
Ответ: $$x=\frac{91+\sqrt{36865}}{58}; x=\frac{91-\sqrt{36865}}{58}$$