Чтобы найти вероятность выпадения суммы 7 при бросании двух кубиков, нужно определить количество благоприятных исходов и разделить на общее количество возможных исходов.
Общее количество возможных исходов при бросании двух кубиков равно $$6 \cdot 6 = 36$$.
Благоприятные исходы (суммы, равные 7): (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1). Всего 6 благоприятных исходов.
Вероятность выпадения суммы 7 равна:
$$P(7) = \frac{\text{Количество благоприятных исходов}}{\text{Общее количество исходов}} = \frac{6}{36} = \frac{1}{6} \approx 0.1667$$
Ответ: $$\frac{1}{6} \approx 0.17$$