Вопрос:

4. Найдите дисперсию случайной величины, имеющей распределение \[X \sim \begin{pmatrix} -3 & 1 & 3 & 5 \\ 0.2 & 0.3 & 0.3 & 0.2 \end{pmatrix}.\]

Ответ:

Сначала найдем математическое ожидание E[X]: \[E[X] = (-3)(0.2) + (1)(0.3) + (3)(0.3) + (5)(0.2) = -0.6 + 0.3 + 0.9 + 1 = 1.6\] Теперь найдем E[X^2]: \[E[X^2] = (-3)^2(0.2) + (1)^2(0.3) + (3)^2(0.3) + (5)^2(0.2) = 9(0.2) + 1(0.3) + 9(0.3) + 25(0.2) = 1.8 + 0.3 + 2.7 + 5 = 9.8\] Дисперсия D[X] вычисляется как: \[D[X] = E[X^2] - (E[X])^2 = 9.8 - (1.6)^2 = 9.8 - 2.56 = 7.24\] Ответ: D[X] = 7.24
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие