Дано: \(cos α = -0.6\), \(\frac{π}{2} < α < π\)
Найти: \(sin α\) и \(tg α\)
Решение:
1. Т.к. \(sin^2 α + cos^2 α = 1\), то \(sin α = ±\sqrt{1 - cos^2 α}\)
2. \(sin α = ±\sqrt{1 - (-0.6)^2} = ±\sqrt{1 - 0.36} = ±\sqrt{0.64} = ±0.8\)
3. Т.к. \(\frac{π}{2} < α < π\), то \(sin α > 0\), значит \(sin α = 0.8\)
4. \(tg α = \frac{sin α}{cos α} = \frac{0.8}{-0.6} = -\frac{4}{3} = -1\frac{1}{3}\)
Ответ: \(sin α = 0.8\), \(tg α = -1\frac{1}{3}\)