1) $$5\sqrt[5]{16} - 2\sqrt[3]{-216} - \sqrt[4]{(-6)^4}$$
$$5\sqrt[5]{16} - 2\sqrt[3]{(-6)^3} - \sqrt[4]{(6)^4} = 5\sqrt[5]{16} - 2(-6) - 6 = 5\sqrt[5]{16} + 12 - 6 = 5\sqrt[5]{16} + 6$$
Ответ: $$5\sqrt[5]{16} + 6$$
2) $$\sqrt[5]{2} \cdot \sqrt[10]{2} + \sqrt[5]{-2\sqrt{2}} = $$
$$\sqrt[5]{2} \cdot \sqrt[10]{2} + \sqrt[5]{-2\sqrt{2}} = 2^{\frac{1}{5}} \cdot 2^{\frac{1}{10}} + (-2 \cdot 2^{\frac{1}{2}})^{\frac{1}{5}} = 2^{\frac{1}{5} + \frac{1}{10}} + (-1)^{\frac{1}{5}} \cdot (2 \cdot 2^{\frac{1}{2}})^{\frac{1}{5}} = 2^{\frac{3}{10}} + (-1)^{\frac{1}{5}} \cdot (2^{\frac{3}{2}})^{\frac{1}{5}} = 2^{\frac{3}{10}} + (-1)^{\frac{1}{5}} \cdot 2^{\frac{3}{10}} = 2^{\frac{3}{10}}(1 + (-1)^{\frac{1}{5}}) = 2^{\frac{3}{10}} (1 - 1) = 0 $$
Ответ: 0
3) $$\sqrt[5]{3} + \sqrt{10} \cdot \sqrt[5]{19} - 6\sqrt{10}. = \sqrt[5]{3} + \sqrt{10} (\sqrt[5]{19} - 6)$$
Ответ: $$\sqrt[5]{3} + \sqrt{10} (\sqrt[5]{19} - 6)$$