$$(\sqrt[3]{a} - \sqrt[3]{b}) (\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}) (\sqrt{a} + \sqrt{b}) = ((\sqrt[3]{a})^3 - (\sqrt[3]{b})^3) (\sqrt{a} + \sqrt{b}) = (a - b) (\sqrt{a} + \sqrt{b}) = ((\sqrt{a})^2 - (\sqrt{b})^2)(\sqrt{a} + \sqrt{b}) = (\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})(\sqrt{a} + \sqrt{b}) = (\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})^2 = (\sqrt{a} - \sqrt{b})(a + 2\sqrt{ab} + b)$$
Ответ: $$(a - b) (\sqrt{a} + \sqrt{b})$$