Упростим выражение:
$$\frac{x^3y-xy^3}{2(y-x)} \cdot \frac{3(x-y)}{x^2-y^2} = \frac{xy(x^2-y^2)}{2(y-x)} \cdot \frac{3(x-y)}{(x-y)(x+y)} = \frac{xy(x-y)(x+y)}{2(y-x)} \cdot \frac{3(x-y)}{(x-y)(x+y)} = \frac{xy \cdot 3(x-y)}{2(y-x)} = \frac{3xy(x-y)}{-2(x-y)} = -\frac{3xy}{2}$$
Подставим значение $$x = 4$$ и $$y = \frac{1}{4}$$:
$$- \frac{3 \cdot 4 \cdot \frac{1}{4}}{2} = - \frac{3}{2} = -1,5$$
Ответ: -1,5