Вопрос:

6. Найдите значение выражения ((25x^3)/a^7)^2*((a^4)/(5x^2))^3 при а = -1/2 и x = -√2/11

Ответ:

6. Найдем значение выражения при заданных значениях a и x:

$$ \left(\frac{25x^3}{a^7}\right)^2 \cdot \left(\frac{a^4}{5x^2}\right)^3 $$

Преобразуем выражение:

$$ = \frac{(25x^3)^2}{(a^7)^2} \cdot \frac{(a^4)^3}{(5x^2)^3} = \frac{25^2x^6}{a^{14}} \cdot \frac{a^{12}}{5^3x^6} $$

Сократим:

$$ = \frac{25^2x^6a^{12}}{5^3x^6a^{14}} = \frac{625}{125} \cdot \frac{1}{a^2} = 5 \cdot \frac{1}{a^2} $$

Подставим значения a = -1/2:

$$ = 5 \cdot \frac{1}{\left(-\frac{1}{2}\right)^2} = 5 \cdot \frac{1}{\frac{1}{4}} = 5 \cdot 4 = 20 $$

Так как x сокращается, значение x = -√2/11 не влияет на результат.

Ответ: 20

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие