г) $$\frac{a\sqrt{b} + b\sqrt{a}}{\sqrt{ab}} = \frac{(a\sqrt{b} + b\sqrt{a}) \cdot \sqrt{ab}}{\sqrt{ab} \cdot \sqrt{ab}} = \frac{a\sqrt{b} \cdot \sqrt{ab} + b\sqrt{a} \cdot \sqrt{ab}}{ab} = \frac{a\sqrt{ab^2} + b\sqrt{a^2b}}{ab} = \frac{a^2\sqrt{b} + b^2\sqrt{a}}{ab} = \frac{a\sqrt{b} + b\sqrt{a}}{\sqrt{ab}}$$.
Ответ: $$\frac{a\sqrt{b} + b\sqrt{a}}{\sqrt{ab}}$$