Вопрос:

4. Прямая \(y = kx + b\) проходит через точки A(4; -6) и B(-8; -12). Найдите \(k\) и \(b\) и запишите уравнение этой прямой.

Ответ:

**Решение:** 1. **Подставим координаты точки A в уравнение прямой:** \[-6 = 4k + b\] 2. **Подставим координаты точки B в уравнение прямой:** \[-12 = -8k + b\] 3. **Решим систему уравнений:** \begin{cases} 4k + b = -6 \\ -8k + b = -12 \end{cases} 4. **Вычтем из второго уравнения первое:** \[-12k = -6\] \[k = \frac{1}{2}\] 5. **Подставим k в первое уравнение:** \[4 \cdot \frac{1}{2} + b = -6\] \[2 + b = -6\] \[b = -8\] **Ответ:** \[k = \frac{1}{2}, b = -8\] Уравнение прямой: \[y = \frac{1}{2}x - 8\]
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие