7. Решить уравнение $$log_8 x + log_{\sqrt{2}} x = 14$$.
$$log_{2^3} x + log_{2^{\frac{1}{2}}} x = 14$$
$$\frac{1}{3} log_2 x + 2 log_2 x = 14$$
$$\frac{7}{3} log_2 x = 14$$
$$log_2 x = 14 \cdot \frac{3}{7}$$
$$log_2 x = 6$$
$$x = 2^6 = 64$$
Проверка:
$$log_8 64 + log_{\sqrt{2}} 64 = log_{2^3} 2^6 + log_{2^{\frac{1}{2}}} 2^6 = \frac{6}{3} + \frac{6}{\frac{1}{2}} = 2 + 12 = 14$$
Ответ: x = 64