Решим:
$$c(c+3) + (c+4)^2 = c^2 + 3c + c^2 + 8c + 16 = 2c^2 + 11c + 16$$
Подставим $$c=-\frac{2}{5}$$
$$2\cdot(-\frac{2}{5})^2 + 11(-\frac{2}{5}) + 16 = 2\cdot\frac{4}{25} - \frac{22}{5} + 16 = \frac{8}{25} - \frac{110}{25} + \frac{400}{25} = \frac{298}{25} = 11\frac{23}{25}$$
Ответ: $$11\frac{23}{25}$$