$$(13 - \sqrt{101})^2 - \sqrt{(\sqrt{101} - 11)^2} = (13 - \sqrt{101})^2 - |\sqrt{101} - 11|$$
$$(13 - \sqrt{101})^2 = 13^2 - 2 \cdot 13 \cdot \sqrt{101} + (\sqrt{101})^2 = 169 - 26\sqrt{101} + 101 = 270 - 26\sqrt{101}$$
$$\sqrt{101} \approx \sqrt{100} = 10$$, значит, $$\sqrt{101} > 10$$ и $$\sqrt{101} - 11 < 0$$, тогда $$|\sqrt{101} - 11| = -(\sqrt{101} - 11) = 11 - \sqrt{101}$$
$$(13 - \sqrt{101})^2 - |\sqrt{101} - 11| = 270 - 26\sqrt{101} - (11 - \sqrt{101}) = 270 - 26\sqrt{101} - 11 + \sqrt{101} = 259 - 25\sqrt{101}$$
Ответ: $$259-25\sqrt{101}$$