Вопрос:

4. Упростите выражение: а) \(6\sqrt{3} + \sqrt{27} - 3\sqrt{75}\); б) \((\sqrt{50} - 2\sqrt{2})\sqrt{2}\); в) \((2 - \sqrt{3})^2\).

Ответ:

а) \(6\sqrt{3} + \sqrt{27} - 3\sqrt{75} = 6\sqrt{3} + \sqrt{9 \cdot 3} - 3\sqrt{25 \cdot 3} = 6\sqrt{3} + 3\sqrt{3} - 3 \cdot 5\sqrt{3} = 6\sqrt{3} + 3\sqrt{3} - 15\sqrt{3} = (6+3-15)\sqrt{3} = -6\sqrt{3}\)

Ответ: \(-6\sqrt{3}\)

б) \((\sqrt{50} - 2\sqrt{2})\sqrt{2} = (\sqrt{25 \cdot 2} - 2\sqrt{2})\sqrt{2} = (5\sqrt{2} - 2\sqrt{2})\sqrt{2} = 3\sqrt{2} \cdot \sqrt{2} = 3 \cdot 2 = 6\)

Ответ: 6

в) \((2 - \sqrt{3})^2 = 2^2 - 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3}\)

Ответ: \(7 - 4\sqrt{3}\)

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие