a) Упростим выражение $$3\frac{3}{7}x^5y^6 \cdot (-2\frac{1}{3}xy)^2$$:
$$3\frac{3}{7}x^5y^6 \cdot (-2\frac{1}{3}xy)^2 = \frac{24}{7}x^5y^6 \cdot (-\frac{7}{3}xy)^2 = \frac{24}{7}x^5y^6 \cdot \frac{49}{9}x^2y^2 = \frac{24 \cdot 49}{7 \cdot 9}x^{5+2}y^{6+2} = \frac{8 \cdot 7}{3}x^7y^8 = \frac{56}{3}x^7y^8 = 18\frac{2}{3}x^7y^8$$.
б) Упростим выражение $$(a^{n+1})^2 : a^{2n}$$:
$$(a^{n+1})^2 : a^{2n} = a^{2(n+1)} : a^{2n} = a^{2n+2} : a^{2n} = a^{2n+2-2n} = a^2$$.
Ответ: a) $$18\frac{2}{3}x^7y^8$$; б) $$a^2$$