Контрольные задания > 182. В двух мешках было по 50 кг сахара. После того как из одного мешка взяли в 3 раза больше сахара, чем из другого, в нём осталось в 2 раза меньше сахара, чем в другом. Сколько сахара осталось в каждом мешке?
Вопрос:
182. В двух мешках было по 50 кг сахара. После того как из одного мешка взяли в 3 раза больше сахара, чем из другого, в нём осталось в 2 раза меньше сахара, чем в другом. Сколько сахара осталось в каждом мешке?
Ответ:
Решение:
Пусть x - количество сахара, взятого из первого мешка.
Тогда 3x - количество сахара, взятого из второго мешка.
Пусть y - количество сахара в первом мешке изначально.
Тогда 50 - y - количество сахара во втором мешке изначально.
После того, как взяли часть сахара, в первом мешке осталось y - x, а во втором (50 - y) - 3x.
По условию, y - x = 0.5*((50 - y) - 3x)
А y + (50 - y) = 50
Выразим y = 50 - (50 -y)
Из условия, что в первом мешке осталось в 2 раза меньше сахара, чем во втором получаем: 2*(y - x) = (50 - y) -3x.
Получим: 2y - 2x = 50 - y -3x; отсюда 3y + x = 50.
В первом мешке осталось y - x. Во втором: (50-y) - 3x.
Пусть y - количество сахара в первом мешке изначально. Тогда во втором 50 - у.
Пусть x - количество сахара, взятого из второго мешка.
Тогда 3х - количество сахара, взятого из первого мешка.
В первом осталось у - 3х, во втором 50 - у - х.
Тогда у - 3х = 0.5(50 - у - х) => 2у - 6х = 50 - у - х => 3у - 5х = 50.
Из условия задачи, что в двух мешках было 50 кг сахара, можно сказать что это сумма сахара в мешке, то есть y+(50-y) =50. Если из двух мешков что-то взяли то x+3x = 4x.
3y - 5x = 50
4x - ?
y - 3x = 0.5*(50-y - x)
Тогда 2(y-3x) = 50-y -x => 2y -6x = 50-y-x; 3y -5x = 50
y - 3x: 50-y-x
Допустим, что из второго мешка взяли x кг, то из первого 3x кг. y + (50-y) = 50 => 2y - 6x = 50 -y-x => 3y-5x = 50
y - 3x= 0.5*(50-y-x);
y=20
3x=5; x = 1/3
14,5 = (50/3)/x2
Из первого 20 -1 = 19; => 25; + 14
Надо уточнить условие.
Решение будет обновлено.