Найдем угол С: ∠C = 180° - ∠A - ∠B = 180° - 105° - 30° = 45°.
Применим теорему синусов: $$\frac{AB}{\sin C} = \frac{BC}{\sin A}$$.
Выразим BC: $$BC = \frac{AB \cdot \sin A}{\sin C} = \frac{12\sqrt{2} \cdot \sin 105°}{\sin 45°} = \frac{12\sqrt{2} \cdot \sin (60°+45°)}{\sin 45°} = \frac{12\sqrt{2} \cdot (\sin 60° \cos 45° + \cos 60° \sin 45°)}{\sin 45°} = \frac{12\sqrt{2} \cdot (\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} \cdot \frac{\sqrt{2}}{2})}{\frac{\sqrt{2}}{2}} = \frac{12\sqrt{2} \cdot (\frac{\sqrt{6} + \sqrt{2}}{4})}{\frac{\sqrt{2}}{2}} = \frac{12\sqrt{2}(\sqrt{6}+\sqrt{2})}{4} \cdot \frac{2}{\sqrt{2}} = 6(\sqrt{6}+\sqrt{2}) = 6\sqrt{6} + 6\sqrt{2}$$.
Ответ: $$BC = 6\sqrt{6} + 6\sqrt{2}$$