Найдем угол A: ∠A = 180° - ∠B - ∠C = 180° - 75° - 45° = 60°.
Применим теорему синусов: $$\frac{AC}{\sin B} = \frac{AB}{\sin C}$$.
Выразим AB: $$AB = \frac{AC \cdot \sin C}{\sin B} = \frac{9 \cdot \sin 45°}{\sin 75°} = \frac{9 \cdot \frac{\sqrt{2}}{2}}{\sin (45°+30°)} = \frac{9 \cdot \frac{\sqrt{2}}{2}}{\sin 45° \cos 30° + \cos 45° \sin 30°} = \frac{9 \cdot \frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2}} = \frac{9\sqrt{2}}{2} \cdot \frac{4}{\sqrt{2}(\sqrt{3}+1)} = \frac{18}{\sqrt{3}+1} = \frac{18(\sqrt{3}-1)}{2} = 9(\sqrt{3}-1) = 9\sqrt{3} - 9$$.
Ответ: $$AB = 9\sqrt{3} - 9$$