Решение:
a) $$2x^2 + 7x - 9 = 0$$
Дискриминант $$D = b^2 - 4ac = 7^2 - 4*2*(-9) = 49 + 72 = 121$$
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-7 + \sqrt{121}}{4} = \frac{-7 + 11}{4} = \frac{4}{4} = 1$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-7 - \sqrt{121}}{4} = \frac{-7 - 11}{4} = \frac{-18}{4} = -4.5$$
Ответ: $$x_1 = 1$$, $$x_2 = -4.5$$
б) $$3x^2 = 18x$$
$$3x^2 - 18x = 0$$
$$3x(x - 6) = 0$$
$$3x = 0$$ или $$x - 6 = 0$$
$$x_1 = 0$$, $$x_2 = 6$$
Ответ: $$x_1 = 0$$, $$x_2 = 6$$
в) $$100x^2 - 16 = 0$$
$$100x^2 = 16$$
$$x^2 = \frac{16}{100} = \frac{4}{25}$$
$$x = \pm \sqrt{\frac{4}{25}} = \pm \frac{2}{5} = \pm 0.4$$
Ответ: $$x_1 = 0.4$$, $$x_2 = -0.4$$
г) $$x^2 - 16x + 63 = 0$$
Дискриминант $$D = (-16)^2 - 4*1*63 = 256 - 252 = 4$$
$$x_1 = \frac{-(-16) + \sqrt{4}}{2} = \frac{16 + 2}{2} = \frac{18}{2} = 9$$
$$x_2 = \frac{-(-16) - \sqrt{4}}{2} = \frac{16 - 2}{2} = \frac{14}{2} = 7$$
Ответ: $$x_1 = 9$$, $$x_2 = 7$$