Вопрос:

Вариант 3 1. В треугольнике МКР углы М и Р равны. Точка E – середина стороны КР, МP 22 см. Разность пе- риметров треугольников МКЕ И МЕР равна 13 см. Найдите стороны МК и РК.

Смотреть решения всех заданий с листа

Ответ:

1. Рассмотрим треугольник МКР, в котором углы М и Р равны, значит, треугольник равнобедренный с основанием МР. Следовательно, МК = РК.

Е – середина стороны КР, значит, КЕ = ЕР.

Разность периметров треугольников МКЕ и МЕР равна 13 см, то есть:

$$P_{MKE} - P_{MEP} = 13$$

Распишем периметры:

$$(МК + КЕ + МЕ) - (МЕ + ЕР + МР) = 13$$

Так как КЕ = ЕР, то:

$$МК - МР = 13$$

Из условия известно, что МР = 22 см, тогда:

$$МК - 22 = 13$$

$$МК = 13 + 22 = 35 \text{ см}$$

МК = РК = 35 см.

Ответ: МК = 35 см, РК = 35 см.

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие