a) \(sin(2 arcsin \frac{1}{2} - 3 arccos(\frac{1}{2}))\)
* \(arcsin(\frac{1}{2}) = \frac{\pi}{6}\)
* \(arccos(\frac{1}{2}) = \frac{\pi}{3}\)
* \(sin(2 * \frac{\pi}{6} - 3 * \frac{\pi}{3}) = sin(\frac{\pi}{3} - \pi) = sin(-\frac{2\pi}{3}) = -\frac{\sqrt{3}}{2}\)
Ответ: \(-\frac{\sqrt{3}}{2}\)
b) \(cos(\frac{1}{2} arcsin 1 + arcsin(\frac{\sqrt{2}}{2}))\)
* \(arcsin(1) = \frac{\pi}{2}\)
* \(arcsin(\frac{\sqrt{2}}{2}) = \frac{\pi}{4}\)
* \(cos(\frac{1}{2} * \frac{\pi}{2} + \frac{\pi}{4}) = cos(\frac{\pi}{4} + \frac{\pi}{4}) = cos(\frac{\pi}{2}) = 0\)
Ответ: 0
c) \(tg(arcsin \frac{\sqrt{3}}{2} + 2 arccos(\frac{\sqrt{2}}{2}))\)
* \(arcsin(\frac{\sqrt{3}}{2}) = \frac{\pi}{3}\)
* \(arccos(\frac{\sqrt{2}}{2}) = \frac{\pi}{4}\)
* \(tg(\frac{\pi}{3} + 2 * \frac{\pi}{4}) = tg(\frac{\pi}{3} + \frac{\pi}{2}) = tg(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{3}\)
Ответ: \(-\frac{\sqrt{3}}{3}\)
d) \(ctg(3 arccos (-1) - arcsin(\frac{1}{2}))\)
* \(arccos(-1) = \pi\)
* \(arcsin(\frac{1}{2}) = \frac{\pi}{6}\)
* \(ctg(3 * \pi - \frac{\pi}{6}) = ctg(\frac{18\pi - \pi}{6}) = ctg(\frac{17\pi}{6}) = ctg(\frac{5\pi}{6}) = -\sqrt{3}\)
Ответ: \(-\sqrt{3}\)