Преобразуем уравнение:
$$ (3x-7)(x+2) = (x+5)(x-3) $$
$$ 3x^2 + 6x - 7x - 14 = x^2 - 3x + 5x - 15 $$
$$ 3x^2 - x - 14 = x^2 + 2x - 15 $$
$$ 2x^2 - 3x + 1 = 0 $$
Решим квадратное уравнение:
$$ D = b^2 - 4ac = (-3)^2 - 4 \cdot 2 \cdot 1 = 9 - 8 = 1 $$
$$ x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{3 + \sqrt{1}}{2 \cdot 2} = \frac{3 + 1}{4} = \frac{4}{4} = 1 $$
$$ x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{3 - \sqrt{1}}{2 \cdot 2} = \frac{3 - 1}{4} = \frac{2}{4} = \frac{1}{2} $$
Ответ: $$ x_1 = 1, x_2 = \frac{1}{2} $$