23) Необходимо упростить выражение:
$$ \frac{4y}{y^2-x^2} - \frac{2}{y-x} = \frac{4y}{(y-x)(y+x)} - \frac{2}{y-x} = \frac{4y}{(y-x)(y+x)} - \frac{2(y+x)}{(y-x)(y+x)} = \frac{4y - 2(y+x)}{(y-x)(y+x)} $$.
$$ \frac{4y - 2y - 2x}{(y-x)(y+x)} = \frac{2y - 2x}{(y-x)(y+x)} = \frac{2(y-x)}{(y-x)(y+x)} = \frac{2}{y+x} $$.
Ответ: $$ \frac{2}{y+x} $$