Сумма углов треугольника равна 180°.
∠BAC + ∠ABC + ∠BCA = 180°
∠BCA = 180° - ∠BAC - ∠ABC = 180° - ∠BAC - ∠ABC
∠A = ∠C, так как AH и CK - биссектрисы.
∠AHB = ∠CKB = 110°
∠ABH = ∠BCK
Рассмотрим треугольник ΔBOC.
∠BOC + ∠OBC + ∠OCB = 180°
∠OBC + ∠OCB = 180° - ∠BOC = 180° - 110° = 70°
∠OBC = ∠ABC / 2
∠OCB = ∠BCA / 2
∠OBC + ∠OCB = ∠ABC / 2 + ∠BCA / 2 = 70°
∠ABC + ∠BCA = 2 * 70° = 140°
∠BAC + ∠ABC + ∠BCA = 180°
∠BAC = 180° - ∠ABC - ∠BCA = 180° - 140° = 40°
∠BAC = ∠BCA = 40°
∠ABC = 140° - ∠BCA = 140° - 40° = 100°
Ответ: ∠B = 100°