Решение:
1. Найдем площадь квадратного листа картона:
\[S_{квадрата} = a^2 = 20^2 = 400 \text{ см}^2\]
2. Найдем радиус круга:
\[r = \frac{d}{2} = \frac{20}{2} = 10 \text{ см}\]
3. Найдем площадь круга:
\[S_{круга} = \pi r^2 = 3,14 \cdot 10^2 = 3,14 \cdot 100 = 314 \text{ см}^2\]
4. Найдем площадь обрезков (разницу между площадью квадрата и площадью круга):
\[S_{обрезков} = S_{квадрата} - S_{круга} = 400 - 314 = 86 \text{ см}^2\]
Ответ: 86 см²