Решение:
Используем формулу для радиуса вписанной окружности в равносторонний треугольник: $$r = \frac{a\sqrt{3}}{6}$$, где $$a$$ - сторона треугольника.
Подставляем значение $$a = 10\sqrt{3}$$:
$$r = \frac{10\sqrt{3} \cdot \sqrt{3}}{6} = \frac{10 \cdot 3}{6} = \frac{30}{6} = 5$$
Ответ: Радиус окружности равен 5.