Контрольные задания > 299 Постройте равнобедренный треугольник: а) по боковой стороне и углу, противолежащему основанию; б) по основанию и углу при основании; в) по боковой стороне и углу при основании; г) по основанию и боковой стороне; д) по основанию и медиане.
Вопрос:
299 Постройте равнобедренный треугольник: а) по боковой стороне и углу, противолежащему основанию; б) по основанию и углу при основании; в) по боковой стороне и углу при основании; г) по основанию и боковой стороне; д) по основанию и медиане.
Ответ:
Решение:
**а) По боковой стороне и углу, противолежащему основанию**
1. Строим угол, противолежащий основанию.
2. На сторонах угла откладываем отрезки, равные боковым сторонам.
3. Соединяем концы отрезков, получаем основание треугольника.
**б) По основанию и углу при основании**
1. Строим отрезок - основание треугольника.
2. На концах основания строим углы, равные углу при основании.
3. Пересечение сторон углов дает вершину треугольника.
**в) По боковой стороне и углу при основании**
1. Строим угол, равный углу при основании.
2. На одной из сторон угла откладываем отрезок, равный боковой стороне.
3. Через конец отрезка проводим прямую под тем же углом к этой стороне, что и угол при основании.
4. Пересечение этих прямых даст вершину треугольника.
**г) По основанию и боковой стороне**
1. Строим основание треугольника.
2. Из концов основания строим окружности с радиусом, равным боковой стороне.
3. Пересечение окружностей дает вершину треугольника.
**д) По основанию и медиане**
1. Строим основание треугольника.
2. Находим середину основания.
3. Из середины основания строим окружность с радиусом, равным медиане.
4. Пересечение окружности с серединным перпендикуляром основания дает вершину треугольника.
**Объяснение:**
Каждый способ построения использует различные свойства равнобедренного треугольника. В первом случае задан угол между боковыми сторонами. Во втором и третьем - задан угол между основанием и боковой стороной. В четвертом и пятом - даны длины отрезков.